Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit
详细信息查看全文 | 推荐本文 |
摘要
A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10鈭? emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700