High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries
详细信息查看全文 | 推荐本文 |
摘要
Nb-doped LiMn1.5Ni0.5O4 materials have been synthesized through a solid-state reaction, and Nb doping achieves some encouraging results. Both crystal domain size and electronic conductivity are influenced by this kind of doping. The lattice parameter of the Nb-doped LiMn1.5Ni0.5O4 samples are slightly larger than that of pure LiMn1.5Ni0.5O4 samples, and Nb doping does not change the basic spinel structure. Even聽though the material has a particle size of 1-2聽渭m, the capacity retention is improved remarkably compared to that of the undoped one when charge-discharged at high rates. The LiNi0.525Mn1.425Nb0.05O4 has a discharge capacity of 102.7聽mAh聽g鈭? at 1 C charge-discharge rate after 100 cycles. Though all samples exhibit similar initial discharge capacities at various high C rates, the Nb-doped LiMn1.5Ni0.5O4 samples display remarkable cyclabilities. Capacity retention of Nb-doped LiMn1.5Ni0.5O4 is excellent without a significant capacity loss at various high C rates. This is ascribed to a smaller crystallite, a higher conductivity, and a higher lithium diffusion coefficient (DLi) observed in this material. As a result, our microscale Nb-doped LiMn1.5Ni0.5O4 can be used for battery applications that require high power and long life, including HEVs and energy storage devices for renewable energy systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700