pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater
详细信息查看全文 | 推荐本文 |
摘要
The effect of pH on chlorination behaviors of 12 antibiotics, including 尾-lactams, sulfonamides, fluoroquinolones, tetracyclines, macrolides, and others at environmentally relevant concentrations was systematically examined in the effluent matrix of activated sludge process. The removal of most antibiotics (except cefalexin and tetracycline) significantly depended on pH in the range of 5.5-8.5. The elimination rates of ciprofloxacin, norfloxacin, anhydro-erythromycin, and roxithromycin increased while that of sulfamethoxazole decreased significantly with the increase of pH. Sulfadiazine, ofloxacin, and trimethoprim exhibited the highest reactivity with free available chlorine under the pH of 6-7, 7, and 7.5, respectively. Not only the free available chlorine species (HOCl and OCl鈭?/sup>), but also the antibiotics species (cationic, neutral and anionic) affected the overall reaction rate. Anionic antibiotic species are usually much more reactive (1-3 orders of magnitude greater) than cationic antibiotic species toward free available chlorine. Although OCl鈭?/sup> is a weaker oxidant than HOCl, chlorination of sulfadiazine, sulfamethoxazole, ciprofloxacin, norfloxacin, and trimethoprim with OCl鈭?/sup> became significant at pH > 7.5. The observed kinetics rate constants calculated from species-specific rate constants could accurately (0.91 < R2 < 0.99) predict the antibiotic removal in chlorination of activated sludge effluent with similar DOC and ammonia concentration to this study at a given pH value.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700