Direct electron transfer between tyrosinase and multi-walled carbon nanotubes for bioelectrocatalytic oxygen reduction
详细信息查看全文 | 推荐本文 |
摘要
We report the fabrication of a tyrosinase bioelectrode by mechanical compression of a MWCNT enzyme mixture. Cyclic voltammetry of the nanostructured bioelectrode demonstrated a Direct Electron Transfer (DET) process between tyrosinase, a copper enzyme, and MWCNT. The latter led to an enzyme redox potential of + 0.30 V vs SCE, close to the redox potential described for the T3 binuclear copper center. Furthermore, we demonstrate, for the first time, a bioelectrocatalytic reduction of oxygen performed by tyrosinase directly wired within the MWCNT disk. A maximum current density of 0.55 mA cm鈭?#xA0;2 was recorded by chronoamperometric measurements at 0 V vs SCE. The bioelectrode exhibits excellent stability over time, conserving more than 50%of its activity after one week. DET between MWCNTs and the T3 binuclear copper centers have been further investigated by studying the influence of two tyrosinase inhibitors: benzoic acid and cyanide. As previously reported for 鈥渂lue鈥?multicopper oxidases, such as bilirubin oxidase and laccase, tyrosinase can achieve oxygen reduction via DET between MWCNT and its T3 binuclear copper center, representing an alternative in the design of oxygen biocathodes for biofuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700