First-principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe
详细信息查看全文 | 推荐本文 |
摘要
A theoretical study of structural, elastic and electronic properties of BeS, BeSe and BeTe is presented using the full-potential augmented plane-waves plus local orbitals (APW + lo) within density-functional theory (DFT). Results are obtained using both the local-density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation potentials. The ground-state properties, like lattice constant, bulk modulus and its first derivative obtained from our calculations agree very well with experimental and other theoretical calculations. Band structures, and total valence charge densities including spin–orbit interaction are analyzed in great detail. The calculated values of the energy gaps, bandwidths, and spin–orbit splittings and the correct band degeneracies are compared to experimental and/or ab initio results. The calculated energy gap for the series of beryllium chalcogenides BeS, BeSe and BeTe is found to be indirect (ΓX) and underestimated by about 40%for both LDA and PBE-GGA compared to experiment. We have also reported the elastic constants of these materials; the elastic constants have been derived by the stress–strain relation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700