Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover?
详细信息查看全文 | 推荐本文 |
摘要
Optimum plant densities are a key to maximise yields in most crops. However, such information is often lacking for more environmentally sound cropping systems, such as living mulches (LM) for small grains. In 2004 and 2005, three trials were conducted in the Swiss Midlands on fields managed in accordance with the Swiss organic farming guidelines. The objective of the study was to determine whether seeding density of winter wheat (Triticum aestivum L.) is a relevant factor for determining grain yield in a white clover (Trifolium repens L.) living mulch. The winter wheat cv. Titlis was directly sown in wide spaced rows (0.375 m) at densities of 300 (LM300), 450 (LM450) or 600 (LM600) viable grains m−2 in a white clover living mulch established at a seeding rate of 15 kg ha−1. A bare soil control treatment with a wheat density of 450 viable grains m−2 (BS450) was also included in the trials. Mean grain yields of LM300, LM450, and LM600 never reached the values observed in BS450. This was mainly due to a lower ear density, which, nevertheless, increased linearly with the seeding density within the living mulch in all trials, but the rate of increase depended on the environment. The decrease of the grain weight brought about by the increasing seeding density had only a marginal impact on the grain yield, which was increased from 1.31, 1.98, and 4.09 Mg ha−1 (LM300) to 1.97, 2.64, and 4.75 Mg ha−1 (LM600) for each of the three trials in the study. Significantly higher protein contents were observed for LM300 compared to the higher densities in the living mulch and to BS450. Our research showed that an increase of the seeding density is an effective mean to increase the grain yield in living mulch systems with white clover. However, it is likely that the control of the living mulch to reduce competition with the main crop is a more relevant factor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700