Time-dependent flow structures and Lagrangian mixing in Rushton-impeller baffled-tank reactor
详细信息查看全文 | 推荐本文 |
摘要
The object of this work is to investigate the role of large-scale convective structures in promoting mixing in a stirred tank. We focus on a standard geometry (flat bottom, four-baffle reactor stirred by a six-blade Rusthon impeller) and we use an Eulerian–Lagrangian approach to investigate numerically the dispersion of fluid particles. The three-dimensional, time-dependent, fully developed flow field is calculated with a computationally efficient procedure using a RANS solver with k? turbulence modeling and the flow field is assessed precisely against experimental data. Then, fluid parcels are tracked in the calculated flow field. Analyzing the trajectory of fluid parcels, the segregated regions within the flow are identified and mixing indicators are calculated (mixing time, circulation length and sojour time distribution). A physical explanation is thus proposed to establish a link between large-scale mixing and complex fluid dynamics generated by the interactions of radial-discharge jet, ring vortices, and upper counter rotating vortex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700