Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie
详细信息查看全文 | 推荐本文 |
摘要
The temperature sensitivity of soil organic carbon (SOC) decomposition will influence the accuracy of the quantitative prediction of carbon (C) balance between ecosystem C fixation and decomposition in a warmer world. However, a consensus has not yet been reached on the temperature sensitivity of SOC decomposition with respect to SOC quality. The fundamental principles of enzyme kinetics suggest that temperature sensitivity of decomposition is inversely related to the C quality of the SOC. This 鈥淐 quality-temperature鈥?hypothesis was tested in a 170-day laboratory experiment by incubating soil samples with changing temperature (low-high-low) at a 卤5聽掳C step every 24聽h. Soil samples were collected from a long-term warming experiment in a tallgrass prairie. There were four treatments of soil samples before lab incubation: control (C), warmed (W), field incubation (FI, litter exclusion), and warmed plus field incubation (WFI). Results showed that SOC decomposition rates were influenced by labile organic C (LOC) content, which were low in the soils under field incubation and decreased with increasing lab incubation time. Field warming and field incubation increased the temperature sensitivity of SOC decomposition in the 1st two lab incubation cycles but the treatment effects diminished as decomposition proceeded, probably due to increased contribution of recalcitrant C. In line with the hypothesis, we found that the lower the SOC quality, the higher the Q10 values. This relationship held across treatments and lab incubation cycles, regardless of whether the differences in SOC quality resulted from inherent differences in SOC chemistry or from differences in the extent of SOC decomposition. Treatment effects of field warming and field incubation on SOC quality and Q10 values also negatively correlated with each other. Our results suggest that dynamics of low-quality SOC have the highest potential to impact long-term C stocks in soils. Potential decreases in SOC quality in response to warming and consequent shifting species composition may result in a positive feedback of SOC to climate change in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700