In situ Raman study on degradation of edge plane graphite negative-electrodes and effects of film-forming additives
详细信息查看全文 | 推荐本文 |
摘要
Structural changes in the surface of edge plane highly oriented pyrolytic graphite (HOPG) electrodes were studied in ethylene carbonate (EC)-based electrolytes by in situ Raman spectroscopy. The Raman spectra revealed that the surface crystallinity of graphite was significantly lowered by the initial intercalation and de-intercalation reactions of Li+. This structural degradation resulted in a sluggish stage transition of Li-GIC in the vicinity of the edge plane in the subsequent potential cycle. On the other hand, when the film-forming additive vinylene carbonate was used in the EC-based electrolyte solution, the crystallinity of the edge plane HOPG was maintained even after potential cycling. In addition, the phase transition of Li-GIC during the 2nd potential cycle proceeded in the same manner as in the initial cycle. Based on the present results, we discuss the suppressive role of film-forming additives on the degradation of the surface structure as it relates to the intercalation mechanism of Li+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700