Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal
详细信息查看全文 | 推荐本文 |
摘要
Superparamagnetic ascorbic acid-coated Fe3O4 nanoparticles with a high specific surface area were successfully synthesized via an environmentally friendly hydrothermal route in the absence of any templates. The as-synthesized ascorbic acid-coated Fe3O4 nanoparticles have a diameter of less than 10 nm, thus leading to a high specific surface area of about 179 m2/g, which is even larger than those of well-defined mesoporous structures. The only used capped agent is ascorbic acid, which serves as a functionalized molecule to make sure the high dispersibility and stability of the ascorbic acid-coated Fe3O4 nanoparticles in aqueous solution. The ascorbic acid-coated Fe3O4 nanoparticles exhibit superparamagnetic properties at room temperature and saturation magnetization approaches 40 emu g鈭?. The ascorbic acid-coated Fe3O4 nanoparticles were evaluated as an absorbent to remove heavy metal arsenic from wastewater. The adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 16.56 mg/g for arsenic (V), and 46.06 mg/g for arsenic (III).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700