The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area
详细信息查看全文 | 推荐本文 |
摘要
Adequate air quality modeling is reliant on accurate meteorological simulations especially in the planetary boundary layer (PBL). To understand how the boundary layer processes affect the mixing and transport of air pollutants, the sensitivity of Weather Research Forecasting (WRF) model with different PBL schemes (YSU聽and MYJ) is utilized. Community Multiscale Air Quality (CMAQ) modeling system is performed subsequently to study the effects of the PBL physical processes on the meteorological and air quality simulations. A comparison is made of two distinct atmospheric conditions. Case 1 considers the influence of the Asian continental outflow where air pollutants carried by long-range transport (LRT) to Taiwan. The variation in ozone (O3) concentration between the two sensitivity runs is mainly caused by the PBL height difference with WRF-MYJ predicts much deeper PBL height near the frontal low-pressure region than does the WRF-YSU. Case 2 is associated with the land-sea breeze flow. In this situation O3 is locally produced from聽the western side of the country where major metropolitan cities and highways are located. Distinctions in O3 are caused by difference in the strength of the land-sea breeze flow between the two runs. At night the WRF-YSU predicts a weaker offshore land breeze than does the WRF-MYJ near the western coastline. During the day, the WRF-YSU predicts a stronger sea breeze near the offshore area than does the WRF-MYJ, while over the landside, the WRF-YSU predicts a lower wind speed than does the WRF-MYJ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700