A novel sol–gel-based amino-functionalized fiber for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples
详细信息查看全文 | 推荐本文 |
摘要
A novel amino-functionalized polymer was synthesized using 3-(trimethoxysilyl) propyl amine (TMSPA) as precursor and hydroxy-terminated polydimethylsiloxane (OH-PDMS) by sol–gel technology and coated on fused-silica fiber. The synthesis was designed in a way to impart polar moiety into the coating network. The scanning electron microscopy (SEM) images of this new coating showed the homogeneity and the porous surface structure of the film. The efficiency of new coating was investigated for headspace solid-phase microextraction (SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography–mass spectrometry (GC–MS) analysis. Effect of different parameters influencing the extraction efficiency such as extraction temperature, extraction time, ionic strength and pH was investigated and optimized. In order to improve the separation efficiency of phenolic compounds on chromatography column all the analytes were derivatized prior to extraction using acetic anhydride at alkaline condition. The detection limits of the method under optimized conditions were in the range of 0.02–0.05 ng mL−1. The relative standard deviations (R.S.D.) (n = 6) at a concentration level of 0.5 ng mL−1 were obtained between 6.8 and 10%. The calibration curves of chlorophenols showed linearity in the range of 0.5–200 ng mL−1. The proposed method was successfully applied to the extraction from spiked tap water samples and relative recoveries were higher than 90%for all the analytes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700