Hydrogen production via solar-aided water splitting thermochemical cycles: Combustion synthesis and preliminary evaluation of spinel redox-pair materials
详细信息查看全文 | 推荐本文 |
摘要
Redox-pair-based thermochemical cycles are considered as a very promising option for the production of hydrogen via renewable energy sources like concentrated solar energy and raw materials like water. This work concerns the synthesis of various spinel materials of the iron and aluminum families via combustion reactions in the solid and in the liquid-phase and the testing of their suitability as redox-pair materials for hydrogen production by water splitting via thermochemical cycles. The effects of reactants' stoichiometry (fuel/oxidizer) on the combustion synthesis reaction characteristics and on the products' phase composition and properties were studied. By fine-tuning the synthesis parameters, a wide variety of single-phase, pure and well crystallized spinels could be controllably synthesized. Post-synthesis, high-temperature calcination studies under air and nitrogen at the temperature levels encountered during solar-aided thermochemical cyclic operation have eliminated several material families due to phase composition instabilities and identified among the various compositions synthesized NiFe2O4 and CoFe2O4 as the two most suitable for cyclic water splitting - thermal reduction operation. First such thermochemical cyclic tests between 800 and 1400聽掳C with NiFe2O4 and CoFe2O4 in powder form in a fixed bed laboratory reactor have demonstrated capability for cyclic operation and alternate hydrogen/oxygen production at the respective cycle steps for both materials. Under the particular testing conditions the two materials exhibited hydrogen/oxygen yields of the same magnitude and similar temperatures of oxygen release during thermal reduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700