Signatures of spin-glass freezing in Co/CoO nanospheres and nanodiscs
详细信息查看全文 | 推荐本文 |
摘要
We present a study of the magnetic properties of Co nanoparticles having a combination of both spherical and disk shapes. The hcp Co nanospheres with an average diameter of 11 nm and nanodiscs of dimensions 鈭?.5脳15 nm2 were prepared by thermal decomposition of di-cobalt octacarbonyl in the presence of an amine surfactant. The as-synthesized nanoparticles were oxidized to grow an antiferromagnetic layer. High resolution transmission electron microscopy showed the presence of a ferromagnet/antiferromagnet (Co/CoO) interface with a 2.2-nm thick CoO shell on the spherical nanoparticles and 0.5 nm thick on nanodiscs. We report the temperature and field dependent DC magnetization, frequency, field, and temperature dependent AC susceptibility, and the radio frequency transverse susceptibility. A low temperature paramagnetic behavior was observed in the DC magnetization at high fields and is assigned to defects in the CoO shell that are not coupled to the antiferromagnetic lattice. Our results support the existence of a low temperature frozen, disordered magnetic state, characterized by a strong exchange coupling between the structurally disordered, spin-glass CoO shell and Co core.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700