Acoustic decoupling of longitudinal modes in generic combustion systems
详细信息查看全文 | 推荐本文 |
摘要
Conditions are examined under which acoustic modes of a chamber filled with hot combustion products can be considered to be decoupled from the plenum acoustics supplying the fresh reactants through a feeding manifold. It is shown that this is controlled by a coupling index  = (bcb)/(ucu)S1/S2 鈮?#xA0;(Tu/Tb)1/2(S1/S2), where Tu and Tb are the fresh and burned gases temperatures and S2/S1 is the expansion ratio between the chamber and injection unit cross sections. It is demonstrated that the acoustic response of a coupled system can be analyzed by considering the plenum and the chamber acoustics separately for small values of the coupling parameter . Longitudinal self-sustained combustion oscillations may then lock on (i) the plenum resonant frequencies, thus becoming independent of downstream modifications of the combustion chamber acoustics, or on (ii) the combustion chamber modes, thus becoming essentially indifferent to the plenum acoustics. The case of a plenum featuring a Helmholtz resonance is investigated in further detail when the chamber exhaust impedance is varied. Exact relations under which the plenum and the chamber modes are decoupled are derived when the chamber is open to atmospheric conditions or when it is equipped with a sonic nozzle. Predictions are compared to measurements for a generic system equipped with a swirl injector, a compact chamber and terminated by an open atmospheric pressure exhaust. It is shown that in this case, self-sustained longitudinal combustion-instabilities develop preferentially near the plenum mode frequencies and are weakly sensitive to modifications in the chamber geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700