Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites
详细信息查看全文 | 推荐本文 |
摘要
We investigated the effects of carbon nanotube (CNT) modification with silane on the flexural and fracture behaviors of modified carbon nanotube epoxy/basalt (CNT/epoxy/basalt) composites. Flexural and mode I fracture tests were performed using acid-treated and silane-treated CNT/epoxy/basalt composites, respectively. FT-IR analysis was conducted to determine the chemical change on the surface of basalt fiber due to the silane modification. After the fracture tests, the fracture surfaces of the CNT/epoxy/basalt composites were examined with scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt composites, depending on the CNT modification. The results show that the flexural modulus and strength of silane-treated CNT/epoxy/basalt composites are 鈭?0%and 鈭?4%greater, respectively, than those of acid-treated CNT/epoxy/basalt composites. The fracture toughness GIc of silane-treated CNT/epoxy/basalt composites was 鈭?0%greater than that of acid-treated CNT/epoxy/basalt composites. SEM examination revealed that the improvement in the flexural and fracture properties of silane-treated CNT/epoxy/basalt composites occurred due to enhanced dispersion and interfacial interaction between the silane-modified CNTs and the epoxy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700