Computational modeling of phase separation and coarsening in solder alloys
详细信息查看全文 | 推荐本文 |
摘要
Solders represent highly versatile and useful materials. They provide a broad range of technical applications such as soldering in automotive processing, microelectromechanical systems (MEMS) and solar panels. Due to the fascinating variety of microstructural changes solder materials underlie, their micromorphological dynamics have been extensively studied in the past decades by experimental, analytical and numerical approaches. The evolved microstructure exerts a significant effect, in particular, in very small components such as solder joints in microelectronic packages. In order to capture the essence of the microstructural evolution in solder alloys with a diffusion theory of heterogeneous solid mixtures we employ an extended Cahn-Hilliard phase-field model. In our contribution we introduce different numerical schemes to treat Cahn-Hilliard equation. Here we focus on the innovative isogeometric finite element approach and outline its considerable benefits in comparison to the other methods. To this end we present numerical simulations of phase decomposition and coarsening controlled by diffusion for eutectic binary solders Sn-Pb and Ag-Cu illustrating the versatility of this approach. A concluding computational study of a three-dimensional phase separation event within a solder ball geometry will corroborate the quality of our model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700