Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder
详细信息查看全文 | 推荐本文 |
摘要
A growing body of evidence indicates that some engineered nanoparticles (ENPs) are toxic to organisms that perform important ecosystem services in terrestrial and aquatic ecosystems. However, toxicity can be influenced by the biotransformation of contaminants, including ENPs, as it may alter the fate and transport of these substances. In turn, fate and transport can influence their bioavailability. To understand how biotransformation influences the fate and transport of ENPs in marine ecosystems, we exposed suspension-feeding mussels, Mytilus galloprovincialis, to two common nano-metal oxides, CeO2 and ZnO, over a range of concentrations from 1 mg L鈭? to 10 mg L鈭?, in a laboratory experiment. Mussels exposed to 10 mg L鈭? accumulated 62 渭g g鈭? of Ce and 880 渭g g鈭? of Zn on a dry tissue basis but rejected 21,000 渭g g鈭? for Ce and 63,000 渭g g鈭? for Zn in pseudofeces. Scanning electron microscope evidence indicates CeO2 remained as ENPs but ZnO did not after being rejected by the mussels. Mussels filtered most of the CeO2 from the aqueous media, while a significant fraction of Zn remained in solution. Differences in ENP solubility affect ENP uptake, excretion, and accumulation in mussels. Our study highlights the potential role of marine suspension feeders in biotransformation of ENPs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700