Two-time dimensional dynamic matrix control for batch processes with convergence analysis against the 2D interval uncertainty
详细信息查看全文 | 推荐本文 |
摘要
A batch process can be treated as a 2-dimentional (2D) system with a time dimension within each batch and a batch dimension from batch to batch. This paper integrates the learning ability of iterative learning control (ILC) into the prediction model of model predictive control (MPC). Based on this integrated model, a 2D dynamic matrix control (2D-DMC) algorithm with a feedback control and an optimal feed-forward control is proposed. The sufficient conditions for exponentially asymptotic and monotonic convergence of the proposed 2D-DMC are established with proof under certain assumptions, in the presence of not only the completely repeatable uncertainties but also the non-repeatable interval uncertainties. The effectiveness of the proposed control scheme is tested through simulation and experimental implementation in the context of injection molding, a typical batch process. The results show that the batch process control performance is significantly improved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700