Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique
详细信息查看全文 | 推荐本文 |
摘要
In this paper, the three-dimensional adaptive finite element modeling is presented for cohesive fracture analysis of non-planer crack growth. The technique is performed based on the Zienkiewicz-Zhu error estimator by employing the modified superconvergent patch recovery procedure for the stress recovery. The Espinosa-Zavattieri bilinear constitutive equation is used to describe the cohesive tractions and displacement jumps. The 3D cohesive fracture element is employed to simulate the crack growth in a non-planar curved pattern. The crack growth criterion is proposed in terms of the principal stress and its direction. Finally, several numerical examples are analyzed to demonstrate the validity and capability of proposed computational algorithm. The predicted crack growth simulation and corresponding load-displacement curves are compared with the experimental and other numerical results reported in literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700