Diamond/WC bilayer formation mechanism by hot-filament CVD
详细信息查看全文 | 推荐本文 |
摘要
A method for the growth of Diamond/WC bilayers in a single process is presented with interest for the production of well adhered electrical contacts to diamond surfaces. This process uses a common hot filament chemical vapor deposition (HFCVD) reactor, with W filaments as the source for the deposition of the metallic layer, and H2 and CH4 gasses as the reactive species for the diamond growth. The method begins by vaporizing the filaments in vacuum for a few minutes, followed by the chemical vapor deposition of diamond. The results have shown that by varying the filament vaporization time and temperature it is possible to deposit on the Si substrate tungsten containing coatings of different thicknesses. The process starts by vaporization of naturally oxidized filaments and deposition on the substrate. Afterward, the tungsten oxide carburises to W2C and WC phases. The CVD growth of the diamond layers on these carbide layers is dependent on the CH4/H2 ratios, system pressure and substrate temperature. The seeding of the Si substrates with diamond powder before the CVD process, guarantees that diamond is nucleated inside the metallic carbide layer, anchoring the top nanocrystalline diamond layer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700