Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: Role of voltage-dependent K+ channels
详细信息查看全文 | 推荐本文 |
摘要
Oxidative stress, selective neuronal loss, and diminished activity of thiamine-dependent enzymes play a role in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. To further understand the major implications of thiamine deficiency (TD) in neuronal death, we induced TD during pregnancy and evaluated the effects on the offspring. The body and brain weights of pups from thiamine-deficient dams were significantly smaller than normal. Loss of neuronal viability was examined by trypan blue exclusion assay, and demonstrated increased cytotoxicity in primary cultures of TD neurons. Additionally, cerebellar cultures were exposed to thiamine-free cell culture medium to better explore the effects of thiamine withdrawal. Alterations in potassium current has previously been associated with the development of cell death. In this study, we examined the TD effects on delayed rectifier and A-type K+ channels, two well-known voltage-activated K+ channels involved in the regulation of action potential firing in cerebellar granule neurons. Current recordings were performed in cultured rat cerebellar granule neurons at day 7, using the whole-cell voltage-clamp technique. Our data demonstrate that thiamine deficiency provoked a significant decrease in the voltage-dependent K+ membrane conductance. Finally, TD markedly depressed the transient A-type K+ currents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700