Mechanical property improvements in Nicalon SiC fibre reinforced silicon nitride ceramics by oxide coating of Si3N4 starting powders
详细信息查看全文 | 推荐本文 |
摘要
Ceramic matrix composites are attractive as candidate materials for high-temperature applications offering some advantages compared to monolithic ceramics and high-temperature metal alloys. SiC fibre reinforced silicon nitride is one such composite system. However, the processing route is critical to the production of a reliable composite. In this study, silicon nitride matrix densification was improved and sintering temperature was lowered by coating of Si3N4 particles with oxides deposited from hydrolysed metal alkoxides. The solution containing oxide coated Si3N4 powders was used as a slurry to infiltrate Nicalon SiC fibre tows. Following previous studies, the fibres were heat-treated in carbon monoxide to improve mechanical and surface properties. Infiltrated green bodies were hot-pressed at elevated temperatures to produce dense composites. The results showed that particle coating accelerated densification kinetics, eliminated pores and reduced the required hot-pressing temperature. There was also less fibre degradation as a result of the lower temperature of densification. Bending strength and fracture toughness of the composites were measured and fractography was conducted using scanning electron microscope. Composites manufactured using coated Si3N4 powders showed improved properties, specifically matrix stiffening and delayed crack initiation under load.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700