Protonation sites in peptide dications and cation-radicals containing 尾-amino acid residues
详细信息查看全文 | 推荐本文 |
摘要
Protonation sites in a model pentapeptide Ala-Ala-尾Ab-Ala-Ala, where 尾Ab was 尾-aminobutyric acid, were studied by ab initio and density functional theory calculations. Gas-phase dication tautomers protonated at the N-terminus and amide oxygens were found to be substantially more stable than tautomers protonated at amide nitrogens. This order of ion stability did not change upon solvation with methanol. Conformational analysis of dication tautomers indicated similar degrees of internal solvation by hydrogen bonding in amide O- and N-protonated ions in the gas phase. Because of the low stability of amide N-protonated tautomers, their formation by electrospray of non-basic peptides is highly unlikely. Computational analysis of Ala-Ala-尾Ab-Ala-Ala cation-radicals indicated substantially lower transition-state energies for NC bond dissociations at Ala residues than for the NC bond dissociation at 尾Ab. The formation of 尾-radicals as z fragments was found to require a high threshold energy. Cleavage of the CONH2 bond leading to b and y fragments was hampered by a high-energy transition state for the formation of an N-protonated cation-radical intermediate as well as by a high threshold energy for the fragment formation. The calculated energies for transition states and dissociation thresholds explain the less efficient NC bond dissociation upon electron capture or transfer in peptide ions containing 尾-amino acid residues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700