DOA estimation based on fourth order cumulant beamforming for nonuniform linear array of DIFAR sonobuoys
详细信息查看全文 | 推荐本文 |
摘要
The Directional Frequency Analysis and Recording (DIFAR) sonobuoy has been widely used in underwater target localization because it can capture more information than the Low Frequency Analysis and Recording (LOFAR) omnidirectional sonobuoy. Recently, array processing for fields of DIFAR sonobuoys has attracted considerable attention in order to enhance the direction of arrival (DOA) estimation performance and accuracy. DIFAR sonobuoys may become irregularly spaced due to the deployment method and the drift experienced once deployed, resulting in a nonuniform array. In this paper, we demonstrate the fourth-order cumulant beamforming (FOC-BF) technique to estimate the DOA for a nonuniform linear array of DIFAR sonobuoys. FOC-BF was compared with the conventional beamforming (CBF) through simulation works. The results show that FOC-BF provides better spatial spectrum with lower sidelobes than CBF. Furthermore, FOC-BF provides superior DOA estimation accuracy over CBF at very low signal to noise ratios (SNR).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700