New partial differential equations governing the joint, response–excitation, probability distributions of nonlinear systems, under general stochastic excitation
详细信息查看全文 | 推荐本文 |
摘要
In the present work the problem of determining the probabilistic structure of the dynamical response of nonlinear systems subjected to general, external, stochastic excitation is considered. The starting point of our approach is a Hopf-type equation, governing the evolution of the joint, response–excitation, characteristic functional. Exploiting this equation, we derive new linear partial differential equations governing the joint, response–excitation, characteristic (or probability density) function, which can be considered as an extension of the well-known Fokker–Planck–Kolmogorov equation to the case of a general, correlated excitation and, thus, non-Markovian response character. These new equations are supplemented by initial conditions and a marginal compatibility condition (with respect to the known probability distribution of the excitation), which is of non-local character. The validity of this new equation is also checked by showing its equivalence with the infinite system of moment equations. The method is applicable to any differential system, in state-space form, exhibiting polynomial nonlinearities. In this paper the method is illustrated through a detailed analysis of a simple, first-order, scalar equation, with a cubic nonlinearity. It is also shown that various versions of Fokker–Planck–Kolmogorov equation, corresponding to the case of independent-increment excitations, can be derived by using the same approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700