Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid
详细信息查看全文 | 推荐本文 |
摘要
Class I Hydrophobins self-assemble at hydrophilic–hydrophobic interfaces into a highly insoluble amphipathic film. Upon self-assembly of these fungal proteins hydrophobic solids turn hydrophilic, while hydrophilic materials can be made hydrophobic. Hydrophobins thus change the nature of a surface. This property makes them interesting candidates to improve physio- and physico-chemical properties of implant surfaces. We here show that growth of fibroblasts on Teflon can be improved by coating the solid with genetically engineered SC3 hydrophobin. Either deleting a stretch of 25 amino acids at the N-terminus of the mature hydrophobin (TrSC3) or fusing the RGD peptide to this end (RGD-SC3) improved growth of fibroblasts on the solid surface. In addition, we have shown that assembled SC3 and TrSC3 are not toxic when added to the medium of a cell culture of fibroblasts in amounts up to 125μgml−1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700