A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina
详细信息查看全文 | 推荐本文 |
摘要
Photosynthetic electron transport, chromatic photoacclimation and expression of the genes encoding the D1, D2, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a D1鈥?isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the D1 and the abundant isoform of the D2 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a D2鈥?isoform whose primary structure is different from the abundant D2 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of D1 and D2 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700