Post-disposal orbital evolution of satellites and upper stages used by the GPS and GLONASS navigation constellations: The long-term impact on the Medium Earth Orbit environment
详细信息查看全文 | 推荐本文 |
摘要
The long-term evolution and environmental impact in MEO of all the abandoned spacecraft and upper stages associated with the GPS and GLONASS navigation constellations were analyzed. The orbits of the disposed objects, as of 1 May 2011, were propagated for 200 years and snapshots of their evolving distribution were obtained, together with an estimation of the changing collision probability with the spacecraft of the operational navigation systems existing or planned in MEO, i.e., GLONASS, GPS, Beidou and Galileo. The probability that the abandoned objects considered will collide with the operational spacecraft of the navigation constellations is very low, even taking into account the intrinsic eccentricity instability of the disposal orbits. Assuming the present or envisaged configuration of the constellations in MEO, the probability of collision, integrated over 200 years, would be <1/300 with a GLONASS spacecraft, <1/15,000 with a GPS or Beidou spacecraft, and <1/250,000 with a Galileo spacecraft. The worst disposal strategy consists in abandoning satellites and upper stages close to the altitude of the operational constellation (GLONASS), while a re-orbiting a few hundred km away (GPS) is able to guarantee an effective long-term dilution of the collision risk, irrespective of the eccentricity instability due to geopotential and luni-solar perturbations. The disposal strategies applied so far to the GPS satellites should be able to guarantee for at least a few centuries a sustainable MEO environment free of collisions among intact objects. Consequently, there would be no need to adopt disposal schemes targeting also the optimal value of the eccentricity vector. However, it should be pointed out that the GPS disposal strategy was devised well in advance of the Beidou constellation announcement, so most of the abandoned satellites were re-orbited fairly close to the altitude of the new Chinese system. A new re-orbiting approach will be therefore needed in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700