Photon, electron, magnon, phonon and plasmon mono-mode circuits
详细信息查看全文 | 推荐本文 |
摘要
Photon circuits are light conducting networks formed by joining several dielectric wave-guide channels for the transmission of light. Their production utilizes the most advanced surface technologies and represents one of the most important challenges for the next decade. These circuits are usually mono-mode when the lateral dimensions of the conducting wires are small as compared to the photon wavelength. Plasmon circuits are plasmon conducting networks, a plasmon being a collective excitation of an electron gas in a metal. Such circuits made out of nanometric metallic clusters and wires can also be tuned to work at light wavelength. Similarly, electron circuits can be designed with modern surface technologies in which the propagation of electrons is non-diffusive. Similar investigations also started recently for circuits in which the propagating excitations are phonons and magnons (spin waves). In this review paper, we deal with mono-mode circuits for propagating photons, non-diffusive ballistic electrons, magnons, phonons and plasmons. In all these circuits, the interfaces between the different wires out of which the circuits are made of, play a fundamental role. All such circuits exhibit a variety of interference effects in their transport properties. Emphasis in this review paper is placed on the network creations, which include barriers, stubs or resonators, closed loops, interconnecting branched networks and multiplexers. Results for the transmission and reflection properties of such circuits are discussed as a function of the wavelength of the excitations and the physical properties of the circuits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700