Solvent mediated microstructures and release behavior of insulin from pH-sensitive nanoparticles
详细信息查看全文 | 推荐本文 |
摘要
The insulin loaded nanoparticles composed of poly (lactic-co-glycolic acid) (PLGA) and hydroxypropyl methylcellulose phthalate (HP55) were prepared via the emulsions solvent diffusion method with two different solvents, namely, DMSO and acetone/water. The microstructures of the nanoparticles were studied by the solubility parameters theory, DSC, FTIR, and the nitrogen adsorption technique. Phase-separated PLGA domains were observed from the nanoparticles prepared with both types of solvents. Mesopores were observed from the nanoparticles prepared with DMSO as the solvent and almost did not exist with acetone/water. An in vitro drug release study showed that the pH-sensitivity of nanoparticles was not only attributed to the pH-dependent dissolubility of HP55 but also to the internal microstructure. The formation of mesopores accelerated the release of insulin, leading to no obvious pH-sensitivity of the nanoparticles prepared with DMSO. However, for the nanoparticles prepared with acetone/water, the release of insulin was pH-dependent. The results demonstrated that solvents played an important role in affecting the microstructures of nanoparticles, which influenced markedly the insulin release behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700