用户名: 密码: 验证码:
Susceptor-assisted microwave annealing for activation of arsenic dopants in silicon
详细信息查看全文 | 推荐本文 |
摘要
Microwave annealing of arsenic-doped silicon was employed to achieve nearly complete dopant activation and repair of damage caused by ion implantation. Analysis of Rutherford backscattering spectra suggested that volumetric heating from microwaves can repair ion-implantation damage. Secondary ion mass spectroscopy depth profiling revealed that even with high damage due to implanted arsenic, microwave annealing achieves repair of lattice damage, and electrical activation of dopants without allowing any significant dopant diffusion into the silicon substrate. Surface temperatures greater than 700 掳C were achieved within ~ 100 s with assisted microwave heating, marking this as a quick annealing technique when compared to un-assisted annealing. This temperature was sufficient for solid phase epitaxial growth in Si. The temperature profile recorded by a thermocouple-calibarated IR pyrometer was explained based upon the type of losses the sample undergoes while heating. The mechanism for susceptor-assisted microwave heating was dominated by dipole polarization losses in the initial stages of anneal and by Ohmic conduction losses at higher temperatures. Cross-section transmission electron microscopy, along with ion channeling spectra indicated that the silicon lattice regained nearly all of its crystallinity during the microwave anneal. Hall measurement and sheet resistance characterization were used to assess the extent of dopant activation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700