Local discontinuous Galerkin methods for nonlinear dispersive equations
详细信息查看全文 | 推荐本文 |
摘要
We develop local discontinuous Galerkin (DG) methods for solving nonlinear dispersive partial differential equations that have compactly supported traveling waves solutions, the so-called “compactons”. The schemes we present extend the previous works of Yan and Shu on approximating solutions for linear dispersive equations and for certain KdV-type equations. We present two classes of DG methods for approximating solutions of such PDEs. First, we generate nonlinearly stable numerical schemes with a stability condition that is induced from a conservation law of the PDE. An alternative approach is based on constructing linearly stable schemes, i.e., schemes that are linearly stable to small perturbations. The numerical simulations we present verify the desired properties of the methods including their expected order of accuracy. In particular, we demonstrate the potential advantages of using DG methods over pseudo-spectral methods in situations where discontinuous fronts and rapid oscillations co-exist in a solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700