Effect of drying methods on the physical properties and microstructures of mango (Philippine 鈥楥arabao鈥?var.) powder
详细信息查看全文 | 推荐本文 |
摘要
Mango powders were obtained at water content below 0.05 kg water/kg dry solids using Refractance Window庐 (RW) drying, freeze drying (FD), drum drying (DD), and spray drying (SD). The spray-dried powder was produced with the aid of maltodextrin (DE = 10). The chosen drying methods provided wide variations in residence time, from seconds (in SD) to over 30 h (in FD), and in product temperatures, from 20 掳C (in FD) to 105 掳C (in DD). The colors of RW-dried mango powder and reconstituted mango puree were comparable to the freeze-dried products, but were significantly different from drum-dried (darker), and spray-dried (lighter) counterparts. The bulk densities of drum and RW-dried mango powders were higher than freeze-dried and spray-dried powders. There were no significant differences (P 猢?#xA0;0.05) between RW and freeze-dried powders in terms of solubility and hygroscopicity. The glass transition temperature of RW-, freeze-, drum- and spray-dried mango powders were not significantly different (P 猢?#xA0;0.05). The dried powders exhibited amorphous structures as evidenced by the X-ray diffractograms. The microstructure of RW-dried mango powder was smooth and flaky with uniform thickness. Particles of freeze-dried mango powder were more porous compared to the other three products. Drum-dried material exhibited irregular morphology with sharp edges, while spray-dried mango powder had a spherical shape. The study concludes that RW drying can produce mango powder with quality comparable to that obtained via freeze drying, and better than the drum and spray-dried mango powders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700