On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review
详细信息查看全文 | 推荐本文 |
摘要
Supercapacitors or electrochemical double-layer capacitors (EDLCs) have capacitance value up to thousands of Farads at the same size as for conventional capacitors. At such capacitance value EDLCs are of interest for electrical energy storage. The specific energy of commercial supercapacitors is limited to 5–6 Wh/kg, whereas for batteries the lower limit is 35–40 Wh/kg. Nonetheless other advantages of supercapacitors make them already useful in conjunction with batteries in power applications. Main results related to supercapacitor performance improvement available in literature are presented. Research efforts have been done to increase the specific capacitance of supercapacitor electrodes based on activated or porous carbon material, already used in commercial products. By using available activated carbon with a specific surface area reaching 3000 m2/g, specific capacitance values up to 300 F/g have been reported for the investigated experimental supercapacitors. Nonetheless, further optimization of activated carbon properties and its use in supercapacitor electrodes is required for 300 F/g and higher value. By addition of metallic oxides or conductive polymers in the activated carbon used for EDLC electrodes, specific capacitance enhancement takes place.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700