Electronic structure of a single MoS2 monolayer
详细信息查看全文 | 推荐本文 |
摘要
The electronic structure of a single MoS2 monolayer is investigated with all electron first-principles calculations based on Kohn Sham Density Functional Theory and variational treatment of spin-orbital coupling. The topologies of the valence band maximum and conduction band minimum are explored over the whole Brillouin zone. The single MoS2 monolayer is confirmed to be a direct band gap semiconductor. The projected density of states (PDOS) of a single monolayer is calculated and compared to that of bulk MoS2. The effective masses and the orbital character of the band edges at high-symmetry points of the Brillouin zone are determined. The spin-splittings of the conduction band minimum (CBMIN) and valence band maximum (VBMAX) are calculated over the whole Brillouin zone. It is found that the maximum spin-splitting of VBMAX is attained at the point of the Brillouin zone and is responsible for the experimentally observed splitting between the A1 and B1 excitons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700