Evidence for neural encoding of Bayesian surprise in human somatosensation
详细信息查看全文 | 推荐本文 |
摘要
Accumulating empirical evidence suggests a role of Bayesian inference and learning for shaping neural responses in auditory and visual perception. However, its relevance for somatosensory processing is unclear. In the present study we test the hypothesis that cortical somatosensory processing exhibits dynamics that are consistent with Bayesian accounts of brain function. Specifically, we investigate the cortical encoding of Bayesian surprise, a recently proposed marker of Bayesian perceptual learning, using EEG data recorded from 15 subjects. Capitalizing on a somatosensory mismatch roving paradigm, we performed computational single-trial modeling of evoked somatosensory potentials for the entire peri-stimulus time period in source space. By means of Bayesian model selection, we find that, at 140 ms post-stimulus onset, secondary somatosensory cortex represents Bayesian surprise rather than stimulus change, which is the conventional marker of EEG mismatch responses. In contrast, at 250 ms, right inferior frontal cortex indexes stimulus change. Finally, at 360 ms, our analyses indicate additional perceptual learning attributable to medial cingulate cortex. In summary, the present study provides novel evidence for anatomical-temporal/functional segregation in human somatosensory processing that is consistent with the Bayesian brain hypothesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700