Sensitive detection of endonuclease activity and inhibition using gold nanorods
详细信息查看全文 | 推荐本文 |
摘要
It is important to develop reliable and sensitive methods for assay of nuclease activity. With this goal in mind, we report a new strategy for nuclease assay by taking advantage of efficient fluorescence resonance energy transfer (FRET) between gold nanorods (GNRs) and fluorescein-tagged single-stranded DNA (FDNA). Upon mixing with GNRs, the FRET between positively charged GNRs and negatively charged FDNA caused a decrease in fluorescence of FDNA. The formation of FDNA/cDNA duplex further improved the FRET efficiency, leading to a significant decrease in fluorescence intensity. However, fluorescence is restored when FDNA1/cDNA1 hybrid was cleaved into small fragments by EcoRI endonucleases, resulting in a decrease in FRET efficiency because of weakened electrostatic interaction between GNRs and the shortened DNA fragments. Activity of EcoRI endonuclease has been real-time studied by monitoring fluorescence change with the prolonging of interaction time. Under optimized conditions, the cleaved fraction is linear with EcoRI concentration over the range of 1.0 脳 10鈭? to 1.0 脳 10鈭? U 渭L鈭?, with a limit of detection of 6.5 脳 10鈭? U 渭L鈭? which is much better or at least comparable to previous reports. Site-specific DNA cleavage by EcoRI endonuclease has also been verified by gel electrophoresis, fluorescence anisotropy and TEM analysis, which indicated that this method is a feasible and reasonable approach to study sequence-specific protein-DNA interactions. Assay of BamHI activity demonstrated that it is a more universally applied method for studying the activity of endonuclease. Furthermore, this fluorescence assay has been also used for studying the inhibition of EcoRI endonuclease activity. Importantly, experimental results suggested that endonuclease inhibitors can be screened by monitoring the change of fluorescence change. Therefore, this FRET assay is a simple, sensitive and effective approach to study endonuclease activity and inhibition, and as such, it promises to provide a feasible method to screen nuclease inhibitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700