Protein-induced Conformational Changes of RNA During the Assembly of Human Signal Recognition Particle
详细信息查看全文 | 推荐本文 |
摘要
The human signal recognition particle (SRP) is a large RNA–protein complex that targets secretory and membrane proteins to the endoplasmic reticulum membrane. The S domain of SRP is composed of roughly half of the 7SL RNA and four proteins (SRP19, SRP54, and the SRP68/72 heterodimer). In order to understand how the binding of proteins induces conformational changes of RNA and affects subsequent binding of other protein subunits, we have performed chemical and enzymatic probing of all S domain assembly intermediates. Ethylation interference experiments show that phosphate groups in helices 5, 6 and 7 that are essential for the binding of SRP68/72 are all on the same face of the RNA. Hydroxyl radical footprinting and dimethylsulphate (DMS) modifications show that SRP68/72 brings the lower part of helices 6 and 8 closer. SRP68/72 binding also protects the SRP54 binding site (helix 8 asymmetric loop) from chemical modification and RNase cleavage, whereas, in the presence of both SRP19 and SRP68/72, the long strand of helix 8 asymmetric loop becomes readily accessible to chemical and enzymatic probes. These results indicate that the RNA platform observed in the crystal structure of the SRP19–SRP54M–RNA complex already exists in the presence of SRP68/72 and SRP19. Therefore, SRP68/72, together with SRP19, rearranges the 7SL RNA in an SRP54 binding competent state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700