Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach: Effects of two-blocks loading and R ratio
详细信息查看全文 | 推荐本文 |
摘要
This contribution presents a continuum damage mechanics model for the high-cycle fatigue life prediction of rubber-like materials. The proposed model is an extension of that proposed by for multiaxial loadings. The damage strain energy release rate is first derived from a generalized Ogden strain energy density and then from the cracking energy density. A new multiaxial fatigue predictor is proposed and presented in its most general form with the aim of being applicable to all hyperelastic materials. The effects of variable amplitude and mean stretch are explicitly accounted for in the damage evolution law. The fatigue damage behavior of a carbon-filled styrene-butadiene rubber is experimentally investigated under tension, torsion and combined tension-torsion loadings both in constant and variable amplitudes, including the effects of different R ratios (i.e. different minimum and maximum stretches). The proposed model, which requires few damage parameters to be identified, is used to predict the number of cycles to failure and, a satisfactory agreement between predicted values and experimental data is clearly highlighted for the different loading paths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700