Utilizing the Chemical Mass Balance and Positive Matrix Factorization models to determine influential species and examine possible rotations in receptor modeling results
详细信息查看全文 | 推荐本文 |
摘要
Data from two of the United States Environmental Protection Agency's Speciation Trends Network fine particulate matter sites within Chicago, Illinois were used to examine the influence that the results and profiles of the Chemical Mass Balance (CMB) receptor model have on the source contributions and profiles of the Positive Matrix Factorization (PMF) model. This was accomplished using the target shape technique, which utilizes a priori information from the CMB source profiles inputted into the PMF model. The target shape methodology involves inputting specific information for the source profiles into the PMF model as it is resolving source profile and contribution matrices. The target shape results demonstrated it is possible to determine in both the CMB and PMF source profiles those species, which do not influence the solutions of either model.

A second method utilizing information from the CMB results was used to impose a condition where the Motor Vehicles source never had a zero contribution as was applied to the CMB model. This involved utilizing an edge rotation to rotate the PMF results to yield a different solution without worsening the fit of the original results. The purpose of this work is to achieve a rotation, which produced a PMF solution where all of the Motor Vehicles contributions were greater than zero. Comparing the rotated Motor Vehicles and Sulfates source contributions in PMF to those obtained from CMB showed a better correlation between the PMF Motor Vehicles contributions to the original CMB results than those prior to rotation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700