Process integration and optimization of a solid oxide fuel cell - Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass
详细信息查看全文 | 推荐本文 |
摘要
Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673-773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion.

This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis.

The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700