Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing
详细信息查看全文 | 推荐本文 |
摘要
This paper presents an improved finite element approach in which a node-based strain smoothing is merged into shear-locking-free triangular plate elements. The formulation uses only linear approximations and its implementation into finite element programs is quite simple and efficient. The method is then applied for static, free vibration and mechanical/thermal buckling problems of functionally graded material (FGM) plates. In the FGM plates, the material properties are assumed to vary across the thickness direction by a simple power rule of the volume fractions of the constituents. The behavior of FGM plates under mechanical and thermal loads is numerically analyzed in detail through a list of benchmark problems. The numerical results show high reliability and accuracy of the present method compared with other published solutions in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700