Advanced friction modeling for sheet metal forming
详细信息查看全文 | 推荐本文 |
摘要
| Figures/TablesFigures/Tables | ReferencesReferences

Abstract

The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a more advanced friction model for large-scale forming simulations based on the surface changes on the micro-scale. When two surfaces are in contact, the surface texture of a material changes due to the combination of normal loading and stretching. Consequently, shear stresses between contacting surfaces, caused by the adhesion and ploughing effect between contacting asperities, will change when the surface texture changes. A friction model has been developed which accounts for the change of the surface texture on the micro-scale and its influence on the friction behavior on the macro-scale. This friction model has been implemented in a finite element code and applied to a full-scale sheet metal forming simulation. Results showed a realistic distribution of the coefficient of friction depending on the local process conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700