Multivariate statistically-based modelling of a membrane bioreactor for wastewater treatment using 2D fluorescence monitoring data
详细信息查看全文 | 推荐本文 |
摘要
This work presents the development of multivariate statistically-based models for monitoring several key performance parameters of membrane bioreactors (MBR) for wastewater treatment. This non-mechanistic approach enabled the deconvolution of 2D fluorescence spectroscopy data, a powerful technique that has previously been shown to capture important information regarding MBR performance. Projection to latent structure (PLS) modelling was used to integrate 2D fluorescence data, after compression through parallel factor analysis (PARAFAC), with operation and analytical data to describe an MBR fouling indicator (transmembrane pressure, TMP), five descriptors of the effluent quality (total COD, soluble COD, concentration of nitrite and nitrate, total nitrogen and total phosphorus in the permeate) and the biomass concentration in the bioreactor (MLSS). A multilinear correlation was successfully established for TMP, CODtp and CODsp, whereas the optimised models for the remaining outputs included quadratic and interaction terms of the compressed 2D fluorescence matrices. Additionally, the coefficients of the optimised models revealed important contributions of some of the input parameters to the modelled outputs. This work demonstrates the applicability of 2D fluorescence and statistically-based models to simultaneously monitor multiple key MBR performance parameters with minimal analytical effort. This is a promising approach to facilitate the implementation of MBR technology for wastewater treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700