Frequency and time domain flutter computations of a wing with oscillating control surface including shock interference effects
详细信息查看全文 | 推荐本文 |
摘要
In this study, the nonlinear aeroelastic characteristics of a wing with an oscillating control surface have been examined in transonic and supersonic regimes. The various effects of rotational stiffness on flutter have also been observed. A modified transonic small-disturbance (TSD) theory is used to more effectively analyze the unsteady aerodynamics of a wing with an oscillating control surface. In the flutter analysis, a coupled time integration method (CTIM) and a transient pulse method (TPM) were used to examine the effects of rotational stiffness reduction on the control surface. The present study shows that the severe decrease of flutter speed and the flutter mode transition can be induced by the reduction of rotational stiffness. In particular, it is shown that the aerodynamic effects of control surface oscillation play an important role in this flutter speed reduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700