Transonic wing flutter predictions by a loosely-coupled method
详细信息查看全文 | 推荐本文 |
摘要
This paper presents transonic wing flutter predictions by coupling Euler/Navier-Stokes equations and structural modal equations. This coupling between Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) is achieved through a Multi-Disciplinary Computing Environment (MDICE), which allows several computer codes or 鈥榤odules鈥?to communicate in a highly efficient fashion. The present approach offers the advantage of utilizing well-established single-disciplinary codes in a multi-disciplinary framework. The flow solver is density-based for modeling compressible, turbulent flow problems using structured and/or unstructured grids. A modal approach is employed for the structural response. Flutter predictions performed on an AGARD 445.6 wing at different Mach numbers are presented and compared with experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700