Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings
详细信息查看全文 | 推荐本文 |
摘要
In this paper structural equations of motion based on nonlinear beam theory and the ONERA aerodynamic stall model are used to study the effects of geometric structural nonlinearity on flutter and limit cycle oscillations (LCO) of high-aspect-ratio wings. For example, the effects of large static pre-flutter deformations in the vertical or torsional direction are considered. In particular, static deformations in the vertical and torsional directions caused by a static angle of attack, gravity and/or manufactured curvature generally decrease system stiffness and flutter stability. The structural nonlinearity also leads to a sensitivity to initial conditions as well as any parameter that influences the static equilibrium condition. A dynamic perturbation equation about a nonlinear static equilibrium is derived which is used to determine the small perturbation flutter boundary. The effects of the geometric structural nonlinearity of the beam theory on both the perturbation flutter boundary and the nonlinear response are significant. Onset of a limit cycle oscillation is dependent upon the delicate between stall aerodynamics and structural nonlinear forces. LCO above and below the perturbation flutter boundary generally occurs over a limited range of flow velocity. LCO can occur below the perturbation flutter velocity due to large initial disturbances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700