Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents
详细信息查看全文 | 推荐本文 |
摘要
Addition of nucleating agents (e.g., talc) is a common way to promote the cell density in polymeric foaming process. It is widely believed that such enhancement is caused by the decrease in free energy barrier for the nucleation to initiate heterogeneously as well as the reduction in gas loss with the existence of the inorganic fillers. In this paper, in situ visualization of the cell formation phenomena during polymeric foaming processes of polystyrene-talc composites blown with carbon dioxide revealed that the expansion of nucleated cells triggered the formation of secondary cells around them. Subsequently, the expansion of the secondary cells also promoted the formation of tertiary cells around them similar to a chain reaction. These observations provided evidences to support the theoretical simulation of stress-induced cell formation around expanding bubbles. A series of parametric studies were conducted to correlate the stress-induced cell formation and various processing and material parameters. The elucidation of the aforementioned cell formation mechanism with the presence of nucleating agents would provide additional guidelines for polymeric foam manufacturers to control the cell morphologies of their products in order to optimize and tailor the desired physical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700