High speed ultra short pulse fiber ring laser using photonic crystal fiber nonlinear optical loop mirror
详细信息查看全文 | 推荐本文 |
摘要
A scheme to generate high speed optical pulse train with ultra short pulse width is proposed and experimentally studied. Two-step compression is used in the scheme: 20 GHz and 40 GHz pulse trains generated from a rational harmonic actively mode-locked fiber ring laser is compressed to a full width at half-maximum (FWHM) of ~ 1.5 ps using adiabatic soliton compression with dispersion shifted fibers (DSF). The pulse trains then undergo a pedestal removal process by transmission through a cascaded two photonic crystal fiber (PCF)-nonlinear optical loop mirrors (NOLM) realized using a double-ring structure. The shortest output pulse width obtained was ~ 610 fs for 20 GHz pulse train and ~ 570 fs for 40 GHz pulse train. The signal to noise ratio of the RF spectrum of the output pulse train is larger than 30 dB. Theoretical simulation of the NOLM transmission is conducted using split-step Fourier method. The results show that two cascaded NOLMs can improve the compression result compared to that for a single NOLM transmission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700